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Highlights  Abstract  

▪ The 3-state model has been developed for 

reliability modelling. 

▪ Based on the semi-Markov model, the 

reliability characteristics were calculated. 

▪ Readiness and suitability indicators were used 

to assess the operational process. 

▪ The results of the 3-state model have been 

compared with those of the 9-state model. 

 Vehicles are important elements of military transport systems. Semi-

Markov processes, owing to the generic assumption form, are a useful 

tool for modelling the operation process of numerous technical objects 

and systems. The suggested approach is an extension of existing 

stochastic methods employed for a wide spectrum of technical objects; 

however, research on light utility vehicles complements the subject gap 

in the scientific literature. This research paper discusses the 3-state semi-

Markov model implemented for the purposes of developing reliability 

analyses. Based on an empirical course of the operation process, the 

model was validated in terms of determining the conditional 

probabilities of interstate transitions for an embedded Markov chain, as 

well as parameters of time distribution functions. The Laplace transform 

was used to determine the reliability function, the failure probability 

density function, the failure intensity, and the expected time to failure. 

The readiness index values were calculated on ergodic probabilities. 
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1. Introduction 

The operation of transport means primarily involves three main 

processes, that is, the implementation of transport tasks together 

with regular technical activities aimed at verifying correct 

vehicle functionality; conducting periodic maintenance and 

servicing; and diagnosing the causes of technical unsuitability 

and their removal through repair or replacement of spare parts 

with new ones. The intensity of vehicle operation affects the 

wear rate of subassemblies and consumables, which directly 

translates into the frequency of maintenance activities. The 

duration during which these vehicles remain in these states is 

strictly correlated with the capacities of a technical subsystem 

that supports the transport system and the effectiveness of 

logistics processes associated with the supply chain of 

consumables and spare parts. In the case of many technical 

systems, due to the unavailability of fast and flexible material 

requirements, the unsuitability time of faulty means of transport 

constitutes a significant factor reducing the values of readiness 

indices [33]. 

Technical availability and reliability of vehicles are two of the 

main determinants of operational effectiveness in modern and 

advanced transport systems. The appearance of a means of 

transport failure in the course of the implementation of transport 

processes generates functional interference with respect to the 

entire system [10, 23]. For this reason, the operational strategy 

of many objects and systems assumes periodic preventive 

maintenance, whose interval and scope depend on both technical 

and economic factors [18]. The result of such actions is  

a reduced number of unplanned shutdown periods of machinery 

and equipment. However, to precisely determine the optimal 

intervals between subsequent maintenance cycles, it is necessary 

to develop appropriate reliability models to describe the 

probability of object failure within a specified period and 

volume of work [24, 36]. 

The objective of this publication is to develop an operation 

process model for light utility vehicles that enables analysing 

their reliability through determining basic reliability 
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characteristics, such as the reliability function, failure 

probability density function, failure intensity, expected time to 

failure and readiness indices. A novel contribution to the current 

state of the source literature is the expansion of existing 

stochastic modelling methods in terms of their applications 

within the field of engineering and technical sciences [3, 5, 13]. 

In addition, the presented research complements the subject 

matter niche, because none of the previously published papers 

applied to the reliability of military light utility vehicles based 

on the semi-Markov model. The research subject matter is 

wheeled vehicles owned by the Polish Armed Forces. Currently 

(Russia’s aggression against Ukraine), the research topic 

positions the importance of the content presented taking into 

account domestic (and international) security issues. 

Furthermore, it is possible to apply the method discussed in 

studies within the defence industry. 

The research paper has been divided into five chapters. The 

further part of the article reviews the current state of knowledge 

in terms of the methods employed and approaches towards 

modelling the reliability of technical objects and systems. The 

third chapter contains a description of semi-Markov processes 

with a method for their implementation in reliability and 

operational studies. Then, in chapter four, the authors presented 

the application of the proposed approach with respect to 

analysing the operation process and reliability of light utility 

vehicles, based on empirical operational data obtained from an 

actual military transport system. The results of the studies and 

analyses presented enable the evaluation of vehicle reliability 

and readiness, which reflects the technical aspect of the 

functional effectiveness of transport means. The reliability 

characteristics developed may be grounds for planning the 

maintenance and repair potential of a technical system. The 

article ends with conclusions drawn from the performed 

computations and indications of future research directions. 

2. Literature review 

Table 1 contains an overview of the source literature on 

modelling the reliability of technical objects and systems in the 

transport, industry, and energy sector. 

Statistical methods are some of the basic methods applied when 

developing reliability models. Selech and Andrzejczak [43] 

studied the reliability of the cabin door lock reliability in rail 

vehicles, using the Kaplan-Meier estimator. Next, using an 

original indicator, they selected a Generalized Gamma 

distribution as the best fitting of the empirical distribution 

function. In turn, Wawrzyński et al. [53] used statistical methods 

to develop a reliability model for aircraft commutators, under 

the assumption of a serial reliability structure of a tested object. 

The results obtained by statistical methods also constitute the 

foundation for the evaluation of advanced models developed 

based on the application of fuzzy logic and neural networks. 

Żyluk et al. [60] developed statistical reliability models for 

lightweight combat aircraft, with the Weibull model turning out 

to be the best match. A fuzzy model with a similar accuracy 

reflected the values of an empirical reliability function. In turn, 

in [34], the multilayer perceptron (MLP) neural model was 

slightly better at approximating the light utility vehicle 

reliability function relative to the exponential and Weibull 

distributions. Whereas, in the case of fluid filling equipment in 

the automotive manufacturing industry, Soltanali et al. [45] 

demonstrated a significant improvement in the accuracy of 

reliability predictions using the Adaptive Neuro-Fuzzy 

Inference System model, compared to Weibull and Non-

Homogeneous Poisson Process models. 

The high accuracy of artificial neural networks in reliability 

modelling has prompted numerous researchers to employ them, 

without the need for their verification with other methods. Lolas 

and Olatunbosun [25] developed models based on MLP 

networks, used to predict the reliability of motor vehicles. In 

turn, Du et al. [11] used neural models to allocate reliability to 

components of industrial machines. On the other hand, Chang 

[7] suggested a method based on the ordered weighted averaging 

operator to allocate reliability and applied the developed model 

to study the liquid crystal display of thin-film transistors. Neural 

models can be improved by hybridization with other methods. 

Bai et al. [2] combined an artificial neural network with partial 

swarm optimization to develop a reliability model that was used 

to analyse industrial robot systems. 

Macheret et al. [27] applied methods based on probabilistic 

dependencies and Monte Carlo simulations to study the 

reliability of military vehicles. A resulting exponential model 

was satisfactory in describing the time between failures (TBF). 

In turn, the authors of studies on micro-electro-mechanical 

system devices [37, 46] proposed the application of probabilistic 

methods to develop hard and soft failure models. The same 

failure classification was used by Lyu et al. [26] in relation to 

multi-state systems. They used probabilistic methods and 

dispersion to develop a reliability model. Another solution 

suggested by Miziuła and Navarro [31] is based on the Birnbaum 

importance measure and was implemented to evaluate the 

impact of the reliability of individual components on the 

reliability of the entire system. 

The Bayesian approach to estimating the reliability of multi-

component systems was presented by Guo and Wilson in [14]. 

The logistic regression, Weibull and degradation models were 

applied to describe the reliability of three components of a serial 

system. Next, using the Bayesian method, the authors developed 

a combined model that determined the reliability of the entire 

system. 

The models most commonly employed for reliability 

analyses are Markov and semi-Markov processes. Depending on 

the complexity of a technical object or system and its operation 

processes, researchers and engineers develop stochastic models 

of a diverse number of states. Stawowy et al. [47] presented a 3-

state Markov model to analyse power supply systems in 

transport telematics devices. In reliability studies related to other 

case studies, researchers constructed more complex models, 

such as a 4-state bearing model [22], a 5-state model for 

microelectromechanical systems [54], and a 10-state model for 

GPS receivers [41]. For a complex port distribution power 

system, Fang et al. [12] developed several Markov models to 

describe the reliability of individual subsystems, that is, 8-state 

models for a solar system, a wind system, and an energy storage 

system, a 4-state model for a combined cooling, heating and 

power system, and a 2-state model for a commercial power 

system. 

Semi-Markov models have a significant advantage over 

Markov models in that they offer a considerably greater scope 
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of possible applications. The applicability of Markov processes 

is limited due to the need to satisfy the conditions of exponential 

distributions for the time characteristics of the modelled 

processes [35]. However, semi-Markov processes are a 

generalization of Markov processes and allow for any 

characteristic distributions [9, 49]. 

Models with a phase space containing 3 operational states 

dominate the field of application of semi-Markov models. One 

of the most important 3-state semi-Markov models is the 

generalized object reliability model developed by Grabski [13], 

validated with assumed parameter values, without specified 

references to technical data. In the course of the research, the 

authors developed original 3-state models applicable to specific 

objects and systems, e.g., four types of repairable systems [8], 

single-use systems [9], special vehicles [5], lithium-ion batteries 

[55] and repairable systems [3]. Mengistu et al. [28] identified a 

five-state phase space of the semi-Markov model for volunteer 

cloud systems and Wu et al. [56] for power stations. L. Wang et 

al. [50] developed 6- and 4-state models to analyse the reliability 

of repairable systems in alternative environments, which turned 

out to be more reliable compared to Markov models. More 

complex models were proposed by Zhang et al. [57], who 

developed a 7-state model to analyse the reliability of  

a multilevel modular converter system. Whereas Blasi et al. [4] 

presented a 9-state semi-Markov model to evaluate the 

reliability of two machines operating in parallel. 

The wide spectrum of applications demonstrated in Table 1 

proves the usefulness of Markov and semi-Markov theories in 

modelling the reliability of technical objects and systems. 

Diversification of the number of states in the phase space proves 

the need to adapt the model to the analysed case study, the 

specificity of the technical object, and the assumptions of the 

operational strategy in particular. Therefore, the authors of this 

paper developed a specialized semi-Markov model to analyse 

the reliability of light utility vehicles. Based on assumptions 

adopted in military technical systems and the 9-state model [33] 

developed for a detailed analysis of vehicle readiness. The phase 

space aggregation was carried out in 3 main operational states. 

Table 1. Review of literature on reliability modelling. 

Methods Models Case study Paper 

Statistical methods 
Generalized Gamma distribution Cabin door lock on rail vehicles [43] 

Reliability series structure model Aircraft commutators [53] 

Statistical methods and fuzzy logic Weibull and fuzzy models Light combat aircraft [60] 

Statistical methods and neural 

networks 

Exponential, Weibull and MLP models Light utility vehicles [34] 

Weibull, Non-Homogeneous Poisson Process and 

Adaptive Neuro-Fuzzy Inference System models 

Fluid filling equipment in automotive manufacturing 

industry 
[45] 

Neural networks 
Neural models (MLP) Vehicles [25] 

Neural model of reliability allocation Machine tools [11] 

Neural networks and partial swarm 

optimization 
Hybrid model Industrial robot systems [2] 

Ordered weighted averaging 
aggregation operator 

Reliability allocation model Thin-film transistor liquid-crystal display [7] 

Probabilistic methods 
Reliability models including hard and soft failures Micro-electro-mechanical systems devices [46][37] 

Models based on Birnbaum importance measure 2-, 3- and 5-component systems [31] 

Probabilistic methods and Monte 

Carlo simulation 
Exponential model Military vehicles [27] 

Probabilistic and dispersion methods Reliability models including hard and soft failures Multi-state systems [26] 

Bayesian methods Combined model of component reliability Multi-component complex system [14] 

Markov processes 

3-state model Power supply systems in transport telematics devices [47] 

4-state model Bearings [22] 

5-state model Micro-electro-mechanical systems [54] 

2-, 4- and 8-state model Port distribution power system [12] 

10-state model GPS Receivers [41] 

Semi-Markov processes 

3-state model 

Technical objects (general) [13] 

Four types of repairable systems [8] 

Single-use system [9] 

Special vehicles [5] 

Lithium-ion batteries [55] 

Repairable systems [3] 

5-state model 
Volunteer cloud systems [28] 

Power station [56] 

4- and 6-state models Repairable systems under alternative environments [50] 

7-state model Modular multilevel converter system [57] 

9-state model Two machines operating in parallel [4] 
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3. Methods 

Operation processes are a complex composition of deterministic 

and random processes, whereas random components are 

interpreted as stochastic processes X(t) reflecting changes in the 

operational states of the technical object studied in discrete or 

continuous time. At any time t, an object is only in one of the 

states identified within the phase space S = X(t). This assumption 

requires a precise identification of all possible operational states 

in which vehicles may remain during the operation process [33]. 

Stochastic processes that satisfy the Markov property are 

important in terms of applicability. According to Markov theory, 

the conditional probabilities of reaching future states X(tn+1) 

result solely from the current state X(tn) [51]. In mathematical 

notation, the property presented [38, 42, 44] is consistent with 

the dependence (1): 

𝑃 {
𝑋(𝑡𝑛) = 𝑥𝑛|𝑋(𝑡𝑛−1) = 𝑥𝑛−1,

𝑋(𝑡𝑛−2) = 𝑥𝑛−2, . . . , 𝑋(𝑡0) = 𝑥0
} 

= 𝑃{𝑋(𝑡𝑛) = 𝑥𝑛|𝑋(𝑡𝑛−1) = 𝑥𝑛−1}  (1) 

The source literature is dominated by the division of Markov 

processes based on state space and time, which distinguishes the 

following process types, i.e.: 

1) discrete in states and discrete over time, 

2) discrete in states and continuous over time, 

3) continuous in states and discrete over time, 

4) continuous in states and continuous over time, 

Models based on discrete-state processes developed for both 

the discrete [30] and continuous times [42]–[45]. 

3.1.Semi-Markov processes 

Semi-Markov processes are a generalization of Markov 

processes in terms of time characteristic distributions. Markov 

models assume exponential distributions of transition times 

between individual states within the phase space, which 

significantly narrows down their applicability when modelling 

reliability. Furthermore, their use without verifying the adopted 

assumptions may lead to significant errors in the obtained results 

[33, 48]. Semi-Markov models are a solution to this problem. 

They allow any distribution of time characteristics [13]. The 

values of sojourn times in states are calculated as time intervals 

from the moment an object entered the Si state until it 

transitioned to the next Sj state. On the basis of the realization 

set of these variables, an approximation of the distributions is 

conducted based on the nonlinear least squares method. 

The basic description of the semi-Markov process is the Q(t) 

renewal kernel matrix, consisting of products of the conditional 

probability of transition from the Si state to the Sj state and 

distribution functions of the condition duration distribution of 

the Si state before transition to the Sj state, according to the 

equation [19, 29]:  

𝑸(𝑡) =

[
 
 
 
 
 

0 𝑄12(𝑡) ⋯ 𝑄1(𝑘−1)(𝑡) 𝑄1𝑘(𝑡)

𝑄21(𝑡) 0 ⋯ 𝑄2(𝑘−1)(𝑡) 𝑄2𝑘(𝑡)

⋮ ⋮ ⋱ ⋮ ⋮
𝑄(𝑘−1)1(𝑡) 𝑄(𝑘−1)2(𝑡) ⋯ 0 𝑄(𝑘−1)𝑘(𝑡)

𝑄𝑘1(𝑡) 𝑄𝑘2(𝑡) ⋯ 𝑄𝑘(𝑘−1)(𝑡) 0 ]
 
 
 
 
 

           (2) 

whereas: 

 𝑄𝑖𝑗(𝑡) = 𝑝𝑖𝑗𝐹𝑖𝑗(𝑡),  (3) 

where pij means the probability of transition from the Si state to 

the Sj state, and Fij(t) is the distribution function of time spent in 

the Si state befor transitioning to the Sj state.  

An embedded Markov chain is constructed for a semi-

Markov process over continuous time. It describes changes in 

process states, not taking into account the times of residence in 

individual states. The possibility of a transition from the Si state 

to the Sj state is assumed for an embedded Markov chain, 

provided that i≠j. The matrix of conditional probabilities of 

interstate transitions P may have non-zero elements, except only 

for the main diagonal, which can be written using the formula: 

𝑷 =

[
 
 
 
 

0 𝑝12 ⋯ 𝑝1(𝑘−1) 𝑝1𝑘
𝑝21 0 ⋯ 𝑝2(𝑘−1) 𝑝2𝑘
⋮ ⋮ ⋱ ⋮ ⋮

𝑝(𝑘−1)1 𝑝(𝑘−1)2 ⋯ 0 𝑝(𝑘−1)𝑘
𝑝𝑘1 𝑝𝑘2 ⋯ 𝑝𝑘(𝑘−1) 0 ]

 
 
 
 

,             (4) 

under the assumption of meeting the condition of the 

stochastic matrix [21, 32]: 

 ∑ 𝑝𝑖𝑗
𝑘
𝑗=1 = 1.   (5) 

Constructing an embedded Markov chain based on an 

empirical process waveform implies the need to acquire 

numerical data on interstate transitions. For this purpose, it is 

justified to construct a population matrix of interstate transitions 

N, according to (6): 

𝑵 =

[
 
 
 
 

0 𝑛12 ⋯ 𝑛1(𝑘−1) 𝑛1𝑘
𝑛21 0 ⋯ 𝑛2(𝑘−1) 𝑛2𝑘
⋮ ⋮ ⋱ ⋮ ⋮

𝑛(𝑘−1)1 𝑛(𝑘−1)2 ⋯ 0 𝑛(𝑘−1)𝑘
𝑛𝑘1 𝑛𝑘2 ⋯ 𝑛𝑘(𝑘−1) 0 ]

 
 
 
 

.             (6) 

The elements nij of the empirical matrix N count the 

transitions in one step between all combinations of states Si and 

Sj of the empirical embedded Markov chain. The process of 

transitions between states should be recorded for so long that all 

possible transitions can be observed. Based on the empirical data 

obtained contained in the matrix N, the unknown elements pij of 

the transition matrix P are estimated, according to the formula 

(7): 

 �̂�𝑖𝑗 =
𝑛𝑖𝑗

∑ 𝑛𝑖𝑗
𝑘
𝑗=1

,   (7) 

where �̂�𝑖𝑗 is the maximum likelihood estimator of the unknown 

value of pij. This estimator is consistent and unbiased, and the 

standard error of this estimator decreases rapidly as the number 

of transitions nij increases. The standard error SE(pij) of the 

estimation of the transition probability pij is given by the formula 

(8) [6, 15]: 

 𝑆𝐸(𝑝𝑖𝑗) = √
𝑝𝑖𝑗(1−𝑝𝑖𝑗)

∑ 𝑛𝑖𝑗
𝑘
𝑗=1

.      (8) 

Estimating the probabilities of transitions pij with an 

acceptable error may require long-term observations for each 

state Si. 

3.2.Reliability modelling 

The reliability function R(t) determines the probability of an 

event, in which a technical object operated under assumed 

conditions remains continuously in a state of technical suitability 

from time 0 to time t [1, 16, 17, 34]. The mathematical reliability 

function description is presented by the dependence (9): 

 𝑅(𝑡) = 𝑃(𝑇 ≥ 𝑡)for 𝑡 ≥ 0,  (9) 

where T is the failure time of the technical object. 

For an n-state semi-Markov model, if at time t = 0 an object 
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is in state Si belonging to a subset of suitability states A’, its first 

time reaching state Sj belonging to a subset of unsuitability states 

A means losing suitability and the appearance of failure [13]. 

The probability of reaching a subset of states A up to time t 

corresponds to the value of the unreliability function Fi(t). 

𝐹𝑖(𝑡) = 𝛷𝑖𝐴(𝑡) = 𝑃(𝛩𝐴 ≤ 𝑡|𝑋(𝑡 = 0) = 𝑖),  (10) 

where ΘA is a random variable that determines the time when the 

object reaches a subset of states A. 

Using the formula (11): 

 𝑅𝑖(𝑡) = 1 − 𝐹𝑖(𝑡),  (11) 

the reliability function R(t) is determined as (12): 

𝑅𝑖(𝑡) = 1 − Φ𝑖𝐴(𝑡) = 1 − 𝑃(Θ𝐴 ≤ 𝑡|𝑋(𝑡 = 0) = 𝑖).   (12) 

The cumulative distribution function ΦiA(t) is calculated 

using the equation (13): 

Φ𝑖𝐴(𝑡) = ∑ 𝑄𝑖𝑗(𝑡)𝑗∈𝐴 +∑ ∫ Φ𝑘𝐴(𝑡 − 𝑥)𝑑𝑄𝑖𝑘(𝑥)
𝑡

0𝑘∈𝐴 ,   (13) 

which, after a Laplace – Stieltjes transform, takes the form: 

�̃�𝑖𝐴(𝑠) = ∑ �̃�𝑖𝑗(𝑠)𝑗∈𝐴 +∑ �̃�𝑖𝑘(𝑠)�̃�𝑘𝐴(𝑠)𝑘∈𝐴 , (14) 

where: 

 �̃�𝑖𝐴(𝑠) = ∫ 𝑒−𝑠𝑡𝑑Φ𝑖𝐴(𝑡)
∞

0
,  (15) 

�̃�𝑖𝑗(𝑠) = ∫ 𝑒−𝑠𝑡𝑑𝑄𝑖𝑗(𝑡)
∞

0
.  (16) 

Equation (13) can be written in matrix form as (17): 

(𝑰 − �̃�𝐴′(𝑠))�̃�𝐴′(𝑠) = �̃�(𝑠),  (17) 

where I is an identity matrix, �̃�𝐴′is a square submatrix of the 

transform matrix �̃�(𝑠), while matrices �̃�𝐴′(𝑠) and �̃�(𝑠) are 

single-column matrices of relevant transforms, according to 

dependencies (18) and (19): 

ϕ̃𝐴′(𝑠) = [�̃�𝑖𝐴(𝑠): 𝑖 ∈ 𝐴′]
T
,  (18) 

�̃�(𝑠) = [∑ �̃�𝑖𝑗(𝑠)𝑗∈𝐴 : 𝑖 ∈ 𝐴′]
T
.  (19) 

3.3 Instantaneous probabilities of states 

Instantaneous probabilities that an object remains in the Sj states 

can be used to determine readiness indices at a given time t. 

Knowing the matrix P = pj(t) of the Si→Sj transition probabilities 

for the semi-Markov process and the initial distribution vector 

of the state probability pj(0), the matrix of instantaneous 

probabilities pj(t) is calculated as a matrix product according to 

formula (20): 

p𝑗(𝑡) = p𝑗(0) ⋅ p(𝑡),   (20) 

The probability matrix pj(t) can be calculated by solving the 

matrix equation (21): 

p̃(𝑠) =
1

𝑠
(I − q̃(𝑠))

−1
(I − h̃(𝑠)), (21) 

whereas the matrix elements are calculated according to the 

dependencies [52] (22-30): 

𝑝𝑖𝑗(𝑠) = ∫ 𝑒−𝑠𝑡𝑑𝑃𝑖𝑗(𝑡)
∞

0
,  (22) 

�̃�𝑖𝑗(𝑠) = ∫ 𝑒−𝑠𝑡𝑑𝑄𝑖𝑗(𝑡)
∞

0
,  (23) 

𝑞𝑖𝑗(𝑡) =
𝑑𝑄𝑖𝑗(𝑡)

𝑑𝑡
= 𝑝𝑖𝑗

𝑑𝐹𝑖𝑗(𝑡)

𝑑𝑡
= 𝑝𝑖𝑗𝑓𝑖𝑗(𝑡),  (24) 

ℎ̃𝑖𝑗(𝑠) = ∫ 𝑒−𝑠𝑡𝑑𝐻𝑖𝑗(𝑡)
∞

0
,  (25) 

ℎ𝑖𝑗(𝑡) = 𝛿𝑖𝑗 ∑ 𝑞𝑖𝑗(𝑡)
𝑛
𝑗=1 = 𝛿𝑖𝑗𝑔𝑖(𝑡), (26) 

𝑔𝑖(𝑡) =
𝑑𝐺𝑖(𝑡)

𝑑𝑡
,   (27) 

𝐺𝑖(𝑡) = ∑ 𝑄𝑖𝑘(𝑡)𝑘∈𝑆 ,   (28) 

�̃�𝑖(𝑠) = ∫ 𝑒−𝑠𝑡𝑑𝐺𝑖(𝑡)
∞

0
,  (29) 

where ij are elements of the identity matrix (30): 

𝛿𝑖𝑗 = {
0   if i ≠ 𝑗
1   if i = 𝑗

.   (30) 

3.4. Ergodic probabilities of states 

Ergodic probabilities values of an embedded Markov chain πj 

are calculated by solving the matrix equation (31) [21]: 

(𝑷𝑇 − 𝑰) ⋅ 𝜫 = 0,   (31) 

assuming that the standardization condition is met, according to 

the formula (32): 

∑ 𝜋𝑗
𝑛
𝑗=1 = 1.   (32) 

The random variable Ti determines the sojourn time in state 

Si before the transition to another state. In turn, the variable Tij 

determines the sojourn time in the Si state before the direct 

transition to the Sj state. If at time t = 0, the object is in the state 

Si ∊ A', then the sum of the times Tij until the transition to the 

state Sk ∊ A is equal to the value of ΘA, as described by the 

formula (33): 

 Θ𝐴 = ∑ 𝑇𝑖𝑗
𝑘
𝑗:𝑆𝑗∈𝐴′

,  𝑆𝑘 ∈ 𝐴.  (33) 

If an embedded Markov chain exhibits ergodicity and there 

are expected values E(Ti) of state sojourn times, the values of 

ergodic probabilities pj for a semi-Markov process are 

determined using the dependence (34-35): 

 𝑝𝑗 =
𝜋𝑗𝐸(𝑇𝑗)

∑ 𝜋𝑖𝐸(𝑇𝑖)
𝑘
𝑖=1

,   (34) 

 𝐸(𝑇𝑗) = ∑ 𝑝𝑖𝑗𝐸(𝑇𝑖𝑗)
𝑘
𝑖=1 ,  (35) 

where πi is the ergodic probability of an embedded Markov chain 

for the Si state, and E(Tij) is the expected time for the direct 

transition from the Si state to the Sj state.  

4. Results and discussions 

4.1. 3-state Semi-Markov model of operation process 

The operation process of light utility vehicles functioning within 

military transport systems is executed within a multi-state phase 

space. The identification of a phase-space state set should take 

into account the objectives of a developed stochastic model.  

 
Figure 1. Aggregation of states of the 9-state model [33] 

modified to the 3-state model 

For the purposes of a thorough analysis and evaluation of the 

operation process in terms of functional readiness indices, 

technical readiness, and technical suitability, the authors of this 

publication developed the 9-state semi-Markov model [33]. The 

calculation of instantaneous probabilities and probabilities of 

first-time reaching a given state subset by a technical object 

within a multi-state model requires having significant 
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computing power suitable for complex mathematical operations. 

A solution to this problem is the aggregation of process phase 

space states. 

The semi-Markov 3-state model was developed, which is  

a modification of the 9-state model proposed in [33] for 

reliability analyses. Reducing the number of operational states 

enabled us to achieve a 3-state phase space containing: S1 – 

Operation, S2 – Periodic maintenance, S3 – Unsuitability. The 

state aggregation diagram is shown in Fig. 1. 

In the 3-state operation model, the S1 state defines technical 

readiness of a vehicle, which is implementing a task or awaiting 

a transport task as part of the analysed transport system. Short-

term activities associated with daily vehicle maintenance and 

refuelling are frequently assumed. The S2 state refers to periodic 

maintenance associated with the checking of the correct 

functioning of essential vehicle mechanisms, the replacement of 

specified parts and operating liquids according to the vehicle 

manual, and maintenance activities. The S3 state means the 

unsuitability of a technical object and the need to conduct 

diagnostic activities in order to identify the causes behind the 

failure and to repair or replace damaged parts, mechanisms, 

subassemblies or assemblies. It also includes the time to wait for 

the availability of qualified personnel as well as materials and 

technical resources of the system to carry out diagnostic and 

repair activities. A directed graph of interstate transitions shown 

in Fig. 2 has been developed for such an identified phase space. 

 
Figure 2. Transition graph of the 3-state semi-Markov model. 

According to the assumptions of the operational strategy 

adopted within the analysed transport system, reaching state S3 

is possible only from state S1. Periodic maintenance activities 

may cover only a vehicle in a state of technical suitability. If a 

vehicle is damaged during operation and is qualified to perform 

periodic maintenance due to completing a standard interval 

between subsequent maintenance cycles, it is first brought to a 

state of technical suitability through repair activities, followed 

by periodic maintenance. In the 3-state model, this principle has 

been implemented as an inability of a transition from state S2 to 

state S3. 

A mathematical description of the 3-state semi-Markov 

model is a renewal kernel matrix Q(t), the elements of which are 

the products of conditional probabilities of the embedded 

Markov chain and distribution functions of conditions times of 

residence in individual states, as represented by formula (36): 

𝑸(𝑡) = [

0 𝑄12(𝑡) 𝑄13(𝑡)

𝑄21(𝑡) 0 0

𝑄31(𝑡) 𝑄32(𝑡) 0

] = 

= [

0 𝑝12𝐹12(𝑡) 𝑝13𝐹13(𝑡)

𝑝21𝐹21(𝑡) 0 0

𝑝31𝐹31(𝑡) 𝑝32𝐹32(𝑡) 0

]. (36) 

An alternative model definition is the matrix q(t), the 

elements of which are products of conditional probabilities of an 

embedded Markov chain and densities of conditional 

probabilities of state residence times, according to the 

dependence (37): 

𝒒(t) = [

0 𝑞12(𝑡) 𝑞13(𝑡)

𝑞21(𝑡) 0 0

𝑞31(𝑡) 𝑞32(𝑡) 0

] = 

= [

0 𝑝12𝑓12(𝑡) 𝑝13𝑓13(𝑡)

𝑝21𝑓21(𝑡) 0 0

𝑝31𝑓31(𝑡) 𝑝32𝑓32(𝑡) 0

]. (37) 

4.2. Estimation of model parameters 

The 3-state semi-Markov model was validated on the basis of 

the empirical waveform of the operation process of a sample of 

19 Honker 2000 vehicles. These vehicles are part of a military 

unit transport system and are intended for transporting people 

and cargo weighing up to 1000 kg. A collective empirical 

database has been developed based on operating documents that 

cover a 3-year study period. The graphical visualization of the 

database can be found in Fig. 3, where each month is marked 

with a relevant colour, referring to the vehicles staying in 

specified operational states. The periods in which a vehicle 

remained in an unsuitable state were expressed in days. The total 

number of interstate transitions for the entire sample was 416. 

This was used as a base to estimate interstate transition 

probabilities for an embedded Markov chain presented by the 

formula (38): 

 𝑷 = [𝑝𝑖𝑗] = [
0 0.51 0.49
1 0 0
0.9 0.1 0

],  (38) 

whereas standard estimation errors amounted to: 

 𝑺𝑬 = [
0 0.0352 0.0352
0 0 0

0.0300 0.0300 0
]. (39) 

SE(pij) values did not exceed 0.04, which can be adopted as  

a satisfactory and acceptable level in engineering applications 

[33, 39, 40]. 

The next model validation stage involves matching 

distributions to process time characteristics and estimating the 

parameters of these distributions. Matlab software was used for 

this purpose. The results are presented in Fig. 4 and Table 2. The 

four characteristics T12, T13, T31 and T32 were matched with an 

exponential distribution with parameter λ (λ12, λ13, λ31 and λ32, 

respectively). Whereas the characteristic T21 was described by a 

gamma distribution with the shape k21 and the scale θ2 

parameters. The R2 coefficient of determination was used as a 

measure of the quality of the match between the empirical and 

theoretical distribution functions. For characteristics T12, T13, and 

T21, coefficient R2 adopted values above 0.96, while for 

characteristics T31 and T32, it ranged from 0.85 to 0.86. 
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Figure 3. Graphical visualization of database. 

 

Table 2. Estimation of distribution parameters. 

Variable Distribution Equation Parameters R2 

T12 Exponential 𝐹12(𝑡) = 1 − 𝑒−𝜆12𝑡 λ12 = 1.3310−5 0.9909 

T13 Exponential 𝐹13(𝑡) = 1 − 𝑒−𝜆13𝑡 λ13 = 1.0710−5 0.9961 

T21 Gamma 𝐹21(𝑡) =
1

𝛤(𝑘21)
𝛾 (𝑘21,

𝑡

𝜃21
) 

k21 = 4 

θ21 = 65.85 
0.9630 

T31 Exponential 𝐹31(𝑡) = 1 − 𝑒−𝜆31𝑡 λ31 = 4.6710−5 0.8560 

T32 Exponential 𝐹32(𝑡) = 1 − 𝑒−𝜆32𝑡 λ32 = 1.4610−4 0.8662 

 
Figure 4. PDFs of the time of sojourn Tij in state Si before transitioning to state Sj: (a) – T12, (b) – T13, (c) – T21, (d) – T31, (e) – T32. 
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4.3. Reliability assessment of light utility vehicles 

Based on empirical data and the estimated parameters of the 3-

state semi-Markov model, calculations were performed 

according to the dependencies presented in Section 3 to assess 

the reliability characteristics of light utility vehicles. The 

reliability function R(t) was determined using Equation (17), 

assuming that a vehicle at time t = 0 is in one of the technical 

suitability states, namely, S1 or S2. In the case of such initial 

conditions, the form of the square matrix �̃�𝐴′(𝑠) is shown by the 

formula (40). While single-column matrices �̃�𝐴′(𝑠) and �̃�(𝑠) 

are consistent with formulas (41) and (42). 

 �̃�𝐴′(𝑠) = [
0 �̃�12(𝑠)

�̃�21(𝑠) 0
], (40) 

 �̃�𝐴′(𝑠) = [
�̃�13(𝑠)

�̃�23(𝑠)
], (41) 

 �̃�(𝑠) = [
�̃�13(𝑠)

0
]. (42) 

Substituting the aforementioned dependencies into formula 

(17) provided the equation: 

 [
1 −�̃�12(𝑠)

−�̃�21(𝑠) 1
] ⋅ [

�̃�13(𝑠)

�̃�23(𝑠)
] = [

�̃�13(𝑠)
0

]. (43) 

Using Mathematica software, the authors obtained the 

solutions to Equation (43), which are the values of the variables 

�̃�13(𝑠) and �̃�23(𝑠) presented using the formula (44): 

 {
�̃�13(𝑠) =

�̃�13(𝑠)

1−�̃�12(𝑠)�̃�21(𝑠)

�̃�23(𝑠) =
�̃�13(𝑠)�̃�21(𝑠)

1−�̃�12(𝑠)�̃�21(𝑠)

. (44) 

Solutions to Equation (42) are Laplace transforms of the 

density function of the probability of the first transition from 

states S1 and S2, respectively, to the state of technical 

unsuitability S3. The probability of a transition from any given 

time t to state S3 depends on the initial state of the process. 

Therefore, the form of the reliability function also depends on 

the initial state. The authors adopted the designation of the 

reliability function R1(t) for an object that stayed at time t = 0 in 

state S1 and R2(t) for the initial state S2. The Laplace transforms 

�̃�1(𝑠) and �̃�2(𝑠) for the reliability functions R1(t) and R2(t), 

respectively, have been determined using the dependence (45): 

 {
�̃�1(𝑠) =

1−�̃�13(𝑠)

𝑠
=

1−�̃�12(𝑠)�̃�21(𝑠)−�̃�13(𝑠)

𝑠(1−�̃�12(𝑠)�̃�21(𝑠))

�̃�2(𝑠) =
1−�̃�23(𝑠)

𝑠
=

1−(�̃�12(𝑠)+�̃�13(𝑠))�̃�21(𝑠)

𝑠(1−�̃�12(𝑠)�̃�21(𝑠))

, (45) 

while transforms �̃�𝑖𝑗(𝑠) are expressed through formulas (46): 

 

{
 
 
 
 

 
 
 
 �̃�12(𝑠) = 𝑝12 (

𝜆12

𝑠+𝜆12
)

�̃�13(𝑠) = 𝑝13 (
𝜆13

𝑠+𝜆13
)

�̃�21(𝑠) = 𝑝21 (
1

1+𝜃21𝑠
)
𝑘21

�̃�31(𝑠) = 𝑝31 (
𝜆31

𝑠+𝜆31
)

�̃�32(𝑠) = 𝑝32 (
𝜆32

𝑠+𝜆32
)

. (46) 

In turn, 𝑞𝑖𝑗(𝑡) values for the analysed case study have been 

determined as dependencies (47): 

{
  
 

  
 
𝑞12(𝑡) = 𝑝12𝜆12𝑒

−𝜆12𝑡

𝑞13(𝑡) = 𝑝13𝜆13𝑒
−𝜆12𝑡

𝑞21(𝑡) = 𝑝21
1

Γ(𝑘21)𝜃21
𝑘21
𝑡𝑘21−1𝑒

−
𝑡

𝜃21

𝑞31(𝑡) = 𝑝31𝜆31𝑒
−𝜆31𝑡

𝑞32(𝑡) = 𝑝32𝜆32𝑒
−𝜆32𝑡

.  (47) 

After substituting estimated values of the time characteristic 

distribution parameters for the semi-Markov process, the authors 

determined the formulas of the reliability functions R1(t) and 

R2(t) in the time domain t, using the inverse Laplace transforms 

of the functions �̃�1(𝑠) and �̃�2(𝑠): 

𝑅1(𝑡) = ℒ
−1{�̃�1}(𝑡) = 

(8.2271 × 10−6 + 5.2308 × 10−6𝑖)𝑒(−0.01674170−0.00148814𝑖)𝑡 

+(8.2271 × 10−6 − 5.2308 × 10−6𝑖)𝑒(−0.01674170+0.00148814𝑖)𝑡  

−(7.4578 × 10−6 − 1.4309 × 10−5𝑖)𝑒(−0.01363380−0.00164869𝑖)𝑡 

−(7.4578 × 10−6 + 1.4309 × 10−5𝑖)𝑒(−0.01363380+0.00164869𝑖)𝑡 

−0.3032𝑒−0.00001070𝑡 + 1.3032𝑒−6.50536×10
−6𝑡  

−2.0773 × 10−16 , (48) 

𝑅2(𝑡) = ℒ−1{�̃�2}(𝑡) = 

−(0.0194 + 0.0147𝑖)𝑒(−0.01674170−0.00148814𝑖)𝑡 

−(0.0194 − 0.0147𝑖)𝑒(−0.01674170+0.00148814𝑖)𝑡 

+(0.0185 − 0.0269𝑖)𝑒(−0.01363380−0.00164869𝑖)𝑡  

+(0.0185 + 0.0269𝑖)𝑒(−0.01363380+0.00164869𝑖)𝑡  

−0.3040𝑒−0.0000107𝑡 + 1.3054𝑒−6.50536×10
−6𝑡 

−2.0773 × 10−16. (49) 

Fig. 5 shows graphical waveforms of the reliability functions 

R1(t) and R2(t) for the range of 0 − 106 (min). They satisfy the 

assumptions about the monotonicity of the reliability function. 

The function limit at infinity is −2.077310−16, which is a value 

negligibly different from zero. 

 

 
Figure 5. Reliability functions: (a) – R1(t), (b) – R2(t). 

 

(a) 

 

(b) 
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Fig. 6 shows the difference in the values between the 

determined reliability functions R1(t) and R2(t) for the time 

domain range of 0 to 106 (min). The maximum observed 

difference in this value does not exceed 0.0014, which means 

almost identical waveforms of both reliability functions for the 

analysed time interval. This conclusion prompts the selection of 

one function as a basis for further reliability analyses. Due to the 

operational strategy in military transport systems assuming the 

assignment of fully operational vehicles to the system, it was 

assumed that at time t = 0 the technical object under study was 

in the S1 state. This implies determining the remaining reliability 

characteristics based on the reliability function R1(t). 

 
Figure 6. Difference value between reliability functions: 

R2(t) – R1(t). 

The failure probability density function f(t) and the failure 

intensity function (t) are identity reliability characteristics, 

which are related to the probability of a failure at a given time t. 

The function f(t) defines the failure probabilities at time t [34] 

per unit of time. The probability calculus defines that the failure 

occurrence density f(t) is a derivative of the unreliability 

function F(t), as demonstrated by dependence: 

 𝑓(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
=

𝑑(1−𝑅(𝑡))

𝑑𝑡
. (50) 

After substituting the function R1(t) into the formula (50), the 

authors obtained the following f1(t): 
𝑓1(𝑡) = (1.2995 × 10−7 + 9.9815 × 10−8𝑖)𝑒(−0.01674169−0.00148813𝑖)𝑡 + 

(1.2995 × 10−7 − 9.9815 × 10−8𝑖)e(−0.01674169+0.00148813𝑖)𝑡 − 

(1.2527 × 10−7 + 1.8279 × 10−7𝑖)𝑒(−0.01363376+0.00164869𝑖)𝑡 − 

(1.2527 × 10−7 − 1.8279 × 10−7𝑖)𝑒(−0.01363376−0.001648692𝑖)𝑡 − 
(3.2440 × 10−6 + 4.6129 × 10−22𝑖)𝑒−0.00001070𝑡 + 

(8.4776 × 10−6 + 1.6602 × 10−21𝑖)𝑒−0.00000651𝑡 (51) 

Whereas the function (t) defines the value of conditional 

probability for a technical object failure at time t, provided that 

it was not damaged during the interval (0, t). According to the 

properties of conditional probability, the value of function (t) 

at time t is expressed through the formula (52): 

 𝜆(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
. (52) 

After substituting the function R1(t) and f1(t) into the formula 

(52), the authors obtained the following form of function 1(t): 

 

𝜆1(𝑡) =

(

 
 
 
 

(1.2995 × 10−7 + 9.9815 × 10−8𝑖)𝑒(−0.01674169−0.00148813𝑖)𝑡 +

(1.2995 × 10−7 − 9.9815 × 10−8𝑖)𝑒(−0.01674169+0.00148813𝑖)𝑡 −

(1.2527 × 10−7 + 1.8279 × 10−7𝑖)𝑒(−0.01363376+0.00164869𝑖)𝑡 −

(1.2527 × 10−7 − 1.8279 × 10−7𝑖)𝑒(−0.01363376−0.001648692𝑖)𝑡 −

(3.2440 × 10−6 + 4.6129 × 10−22𝑖)𝑒−0.00001070𝑡 +

(8.4776 × 10−6 + 1.6602 × 10−21𝑖)𝑒−0.00000651𝑡 )

 
 
 
 

/ 

(

  
 

(8.2271 × 10−6 + 5.2308 × 10−6𝑖)𝑒(−0.01674170−0.00148814𝑖)𝑡 +

(8.2271 × 10−6 − 5.2308 × 10−6𝑖)𝑒(−0.01674170+0.00148814𝑖)𝑡 −

(7.4578 × 10−6 − 1.4309 × 10−5𝑖)𝑒(−0.01363380−0.00164869𝑖)𝑡 −

(7.4578 × 10−6 + 1.4309 × 10−5𝑖)𝑒(−0.01363380+0.00164869𝑖)𝑡 −

0.3032𝑒−0.00001070𝑡 + 1.3032𝑒−6.50536×10
−6𝑡 − 2.0773 × 10−16)

  
 

. (53) 

Function waveforms f1(t) and 1(t) have been graphically 

presented using graphs within the time domain range of 0 – 106 

(min) in Fig. 7. The function f1(t) decreases and asymptotically 

tends to 0, while function 1(t) is increasing and stabilizes at a 

level of approximately 6.510-6 (min-1) after 5105 (min). 

The mean time to failure (MTTF) is an important measure of 

the reliability of technical objects that defines the correct 

operating time of the vehicle. It is determined as a definite 

integral of the reliability function, within a range from 0 to , 

which is expressed in mathematical notation by equation (54): 

 𝑀𝑇𝑇𝐹 = ∫ 𝑡 ⋅ 𝑓(𝑡)𝑑𝑡
∞

0
= ∫ 𝑅(𝑡)𝑑𝑡

∞

0
. (54) 

 

 
Figure 7. Reliability characteristics: (a) – PDF of failure f1(t), 

(b) – intensity of failure λ1(t). 

In the analysed case study of light utility vehicles, the 

calculated MTTF based on the base of the R1(t) function is 

171,989.0 (min). Converted to calendar days, this amounts to a 

value of 119.44 (days). 

4.4. Readiness and suitability 

According to the methodology adopted to determine vehicle 

readiness and suitability indices, the authors studied the 

 

(a) 

 

(b) 

 

 

(a) 

 

(b) 
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developed 3-state semi-Markov model. The conditional 

probability matrix �̃�(𝑠) in the domain of the Laplace operator s 

is calculated using equation (55): 

 𝐩(𝑠) =
1

𝑠
(𝐈 − �̃�(𝑠))

−1
(𝐈 − �̃�(𝑠)), (55) 

where elements of the matrix �̃�(𝑠) are represented by the 

formula (46), while non-zero elements of the matrix �̃�(𝑠) have 

been determined based on systems of equations (56) and (57): 

 

{
 

 
𝐺1(𝑡) = 𝑄12(𝑡) + 𝑄13(𝑡) = 𝑝12(1 − 𝑒

−𝜆12𝑡) + 𝑝13(1 − 𝑒
−𝜆13𝑡)

𝐺2(𝑡) = 𝑄21(𝑡) = 𝑝21
1

Γ(𝑘21)
𝛾 (𝑘21,

𝑡

𝜃21
)

𝐺3(𝑡) = 𝑄31(𝑡) + 𝑄32(𝑡) = 𝑝31(1 − 𝑒
−𝜆31𝑡) + 𝑝32(1 − 𝑒

−𝜆32𝑡)

 (56) 

 

{
 
 

 
 ℎ11(𝑡) = 𝑔1(𝑡) =

𝑑𝐺1(𝑡)

𝑑𝑡
= 𝑝12𝜆12𝑒

−𝜆12𝑡 + 𝑝13𝜆13𝑒
−𝜆13𝑡

ℎ22(𝑡) = 𝑔2(𝑡) =
𝑑𝐺2(𝑡)

𝑑𝑡
= 𝑝21

1

𝛤(𝑘21)𝜃21
𝑘21
𝑡𝑘21−1𝑒

−
𝑡

𝜃21

ℎ33(𝑡) = 𝑔3(𝑡) =
𝑑𝐺3(𝑡)

𝑑𝑡
= 𝑝31𝜆31 𝑒

−𝜆31𝑡+𝑝32𝜆32𝑒
−𝜆32𝑡

 (57) 

and take the form consistent with the set of equations (58): 

 

{
 
 

 
 ℎ̃11(𝑠) = ℒ{ℎ11}(𝑠) = 𝑝12 (

𝜆12

𝑠+𝜆12
) + 𝑝13 (

𝜆13

𝑠+𝜆13
)

ℎ̃22(𝑠) = ℒ{ℎ22}(𝑠) = 𝑝21 (
1

1+𝜃21𝑠
)
𝑘21

ℎ̃33(𝑠) = ℒ{ℎ33}(𝑠) = 𝑝31 (
𝜆31

𝑠+𝜆31
) + 𝑝32 (

𝜆32

𝑠+𝜆32
)

 (58) 

The elements of the values of the conditional probability 

matrix in the time domain t are calculated as the inverse Laplace 

transform of matrix elements �̃�(𝑠), as demonstrated by the 

formula (59): 

 p(𝑡) = ℒ−1{p̃}(𝑡). (59) 

Instantaneous probabilities of a technical object staying in 

individual states are determined as a product of the initial 

distribution vector and conditional probability matrices for the 

semi-Markov process. It was assumed that at time t = 0 a vehicle 

was in full technical suitability, therefore, it remained in state S1. 

The initial distribution vector pj(0), which describes the assumed 

adopted, has been presented using formula (60): 

 𝐩𝑗(0) = [1 0 0]. (60) 

Fig. 8 shows the waveform of changes in the values of 

instantaneous probabilities pj(t) over the range from 0 to 5105 

(min). After 105 (min), the value stabilizes, and the probabilities 

pj(t) tend to ergodic values. 

The approximate values of instantaneous probabilities p1(t), 

p2(t) and p3(t) are represented by formulas (61-63):

 

𝑝1(𝑡) = 0.0912𝑒
−0.00005131𝑡 + 0.0177𝑒−0.00001486𝑡 + 0.0226𝑒−0.00001233𝑡 + 0.8667𝑒9.84533644×10

−22𝑡 +

𝑒(−0.01674167−0.00148812𝑖)𝑡 ((0.0248 + 0.0190𝑖) + (0.0248 − 0.0190𝑖)𝑒0.00297623𝑖𝑡) +

𝑒(−0.01363379−0.00164865𝑖)𝑡 ((−0.0239 + 0.0349𝑖) − (0.0239 + 0.0349𝑖)𝑒(0.00329731𝑖)𝑡), (61) 

 

𝑝2(𝑡) = 0.7277 + 1.6486 × 10
−4𝑒−0.00005131𝑡 − 2.8573 × 10−5𝑒−0.00001486𝑡 + 1.3228 × 10−4𝑒−0.00001233𝑡 −

0.7262𝑒9.84533644×10
−22𝑡 + 𝑒(−0.016741665−0.00148811𝑖)𝑡 ((−0.0248 − 0.0190𝑖) − (0.0248 − 0.0190𝑖)𝑒(0.00329731𝑖)𝑡) +

𝑒(−0.01363379−0.00164865𝑖)𝑡 ((0.0239 − 0.0349𝑖) + (0.0239 + 0.0349𝑖)𝑒(0.00329731𝑖)𝑡), (62) 

 

𝑝3(𝑡) = 5.2430 × 10
−6

(

  
 

−148274.1947 − 17434.5692𝑒−0.00005131𝑡 − 3349.5998𝑒−0.00001486𝑡 −

4360.4149𝑒−0.00001233𝑡 + 173419.0738𝑒9.84533644×10
−22𝑡 +

𝑒(−0.01674167𝑖)𝑡 ((−1.5734 − 0.9999𝑖) − (1.5734 − 0.9999𝑖)𝑒(0.00297623𝑖)𝑡) +

𝑒(−0.01363379−0.00164865𝑖)𝑡 ((1.4259 − 2.7382𝑖) + (1.4259 + 2.7382𝑖)𝑒(0.00329731𝑖)𝑡))

  
 

. (63) 

 
Figure 8. Instantaneous probabilities of states: (a) – p1(t), (b) – p2(t), (c) – p3(t). 

 

(a) 

 

(b) 

 

(c) 
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Figure 8. (continued) 

Dependence (31) was used to determine the ergodic 

probabilities πj for an embedded Markov chain. The dependence, 

after substituting appropriate values for the developed model, 

adopted the form of a matrix equation (64): 

([

0 𝑝12 𝑝13
𝑝21 0 0
𝑝31 𝑝32 0

]

T

− [
1 0 0
0 1 0
0 0 1

]) ⋅ [

𝜋1
𝜋2
𝜋3
] = [

0
0
0
], (64) 

assuming that the sum πj is equal to 1. 

The solution of Equation (64) is shown in Table 3. Based on 

Equation (35), the authors calculated the expected durations for 

the vehicle to stay in individual operational states. The system 

should tend to maximize the duration of the S1 state. The time 

E(T2) depends on the adopted periodic maintenance strategy, the 

scope of maintenance activities, and the technical capabilities of 

the system. The S3 state is undesirable, since it reduces the 

capabilities of a transport system, and, thus, tends to minimize 

its duration.  

Table 3. Ergodic probabilities of embedded Markov chain 

and semi-Markov process. 

 S1 S2 S3 

πj 0.4882 0.2750 0.2368 

E(Tj) (min) 84140.3 263.4 26121.3 

E(Tj) (days) 58.43 0.18 18.14 

pj 0.8678 0.0015 0.1307 

 

Probabilities πj and the expected times E(Tj) were used to 

determine the ergodic probabilities of the semi-Markov process 

pj. They are the basis for calculating technical suitability and 

readiness indices. 

Readiness means that a vehicle reamins in the S1 state and 

the value of the readiness coefficient corresponds to the ergodic 

probability p1 = 0.8678. In turn, the set {S1, S2} is a subset of the 

technical suitability states, which implies a value of the technical 

suitability coefficient equal to p1+p2 = 0.8693. 

5. Conclusions  

The operational process of light utility vehicles was modelled 

using the semi-Markov process theory. The phase space was 

identified on the basis of the analysis of the empirical waveform 

of operation and previously developed models. The 9-state 

model was aggregated into 3 main operational states. S1 – 

operation, S2 – periodic maintenance, S3 – unsuitability. Based 

on actual data acquired from a military transport system, the 

authors estimated the values of interstate transition conditional 

probability matrices of an embedded Markov chain and matched 

time characteristic distribution functions. The standard 

estimation errors of the SE(pij) probabilities and the 

determination coefficient R2 between the empirical and 

theoretical distribution functions obtained values that were 

satisfactory from the engineering applicability perspective. 

Given all the above, it can be concluded that the 3-state semi-

Markov model is a credible representation of the studied military 

vehicle operation process. Reliability functions were determined 

as complements to the variable distribution function ΘA, which 

denotes the time of the first transition to the subset of unsuitable 

states. The considerations were carried out under two 

assumptions regarding a technical object that remained at time t 

= 0 in states S1 and S2, respectively. Based on the graph showing 

the difference between functions R1(t) and R2(t), it was 

concluded that the waveform of the reliability function 

negligibly depends on the initial state of the operation process 

(assuming that this state belongs to a subset of states of technical 

suitability). The reliability function was used to determine other 

characteristics of the objects studied, that is, the failure 

probability density function and the failure intensity. The 

analytical form of the determined characteristics was not directly 

interpreted. However, using advanced IT software, the authors 

obtained their graphical form, which facilitated the 

interpretation of results in the form of dependence graphs in the 

time domain. The failure probability density function is 

decreasing, while the failure intensity is increasing, and 

stabilizes after 5105 (min) at a level of approx. 6.510-6  

(min-1). The expected time to failure was calculated using a 

definite integral reliability function in the range from 0 to  and 

amounted to approx. 119.44 (days). 

The final stage of the research involved determining 

instantaneous probabilities that a vehicle would remain in the 

operational state. The solution of a matrix equation in the 

domain of the Laplace operator s, followed by the 

implementation of an inverse Laplace transform, allowed us to 

obtain the analytical form of instantaneous probabilities pj(t) in 

the time domain t. Based on graphical interpretations, the 

authors concluded that the process stabilizes after a time of 

approximately 105 (min). The ergodic probabilities of the semi-

Markov process have been determined using the ergodic 

probabilities of the embedded Markov chain and values of 

expected times of residence in operational states. The vehicle 

technical suitability and readiness indices adopted values of 

0.8678 and 0.8693, respectively, which, however, compared to 

the 9-state model [33] means a reduction of approximately 4.6%. 

Therefore, the 3-state model is a less accurate reflection of the 

actual operation process. However, it significantly reduces and 

simplifies the computations performed in relation to reliability 

analyses. 

The proposed approach enables a comprehensive reliability 

analysis of technical systems and objects for a multi-state phase 

space of the operation process. This paper presents all the stages 

of developing a semi-Markov model, its validation, and its 

application to determine the most important reliability 

characteristics and readiness indices of an object. In turn, the 

potential for further research directions may be the employing 

of a 3-state semi-Markov model to optimize the periodic 

maintenance and repair process. 

 

(a) 

 

(b) 

 

(c) 
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